Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 19, 2026
-
Integration of third-party SDKs are essential in the development of mobile apps. However, the rise of in-app privacy threat against mobile SDKs — called cross-library data harvesting (XLDH), targets social media/platform SDKs (called social SDKs) that handles rich user data. Given the widespread integration of social SDKs in mobile apps, XLDH presents a significant privacy risk, as well as raising pressing concerns regarding legal compliance for app developers, social media/platform stakeholders, and policymakers. The emerging XLDH threat, coupled with the increasing demand for privacy and compliance in line with societal expectations, introduces unique challenges that cannot be addressed by existing protection methods against privacy threats or malicious code on mobile platforms. In response to the XLDH threats, in our study, we generalize and define the concept of privacypreserving social SDKs and their in-app usage, characterize fundamental challenges for combating the XLDH threat and ensuring privacy in design and utilization of social SDKs. We introduce a practical, clean-slate design and end-to-end systems, called PESP, to facilitate privacy-preserving social SDKs. Our thorough evaluation demonstrates its satisfactory effectiveness, performance overhead and practicability for widespread adoption.more » « less
-
A new type of malicious crowdsourcing (a.k.a., crowdturfing) clients, mobile apps with hidden crowdturfing user interface (UI), is increasingly being utilized by miscreants to coordinate crowdturfing workers and publish mobile-based crowdturfing tasks (e.g., app ranking manipulation) even on the strictly controlled Apple App Store. These apps hide their crowdturfing content behind innocent-looking UIs to bypass app vetting and infiltrate the app store. To the best of our knowledge, little has been done so far to understand this new abusive service, in terms of its scope, impact and techniques, not to mention any effort to identify such stealthy crowdturfing apps on a large scale, particularly on the Apple platform. In this paper, we report the first measurement study on iOS apps with hidden crowdturfing UIs. Our findings bring to light the mobile-based crowdturfing ecosystem (e.g., app promotion for worker recruitment, campaign identification) and the underground developer's tricks (e.g., scheme, logic bomb) for evading app vetting.more » « less
-
Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today's IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today's IoT-based attacks.more » « less
-
Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today’s IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today’s IoT-based attacks.more » « less
An official website of the United States government

Full Text Available